$CN*(A^2\Pi_i)$ CHEMILUMINESCENCE FROM C + N₂O \rightarrow CN*($A^2\Pi_i$) + NO

G. Dorthe, M. Costes and M. Destriau

Laboratoire de Chimie Physique A, Université de Bordeaux I, 33405 Talence (France)

At room temperature, the reaction C + N_2O is very fast and may proceed along the following pathways^{1,2}:

$$C({}^{3}P_{j}) + N_{2}O({}^{1}\Sigma^{+}) = 1.47 \text{ eV}$$

$$C({}^{3}P_{j}) + N_{2}O({}^{1}\Sigma^{+}) = 2.61 \text{ eV}$$

$$C({}^{3}P_{j}) + N_{2}O({}^{1}\Sigma^{+}) = 2.61 \text{ eV}$$

$$C({}^{3}P_{j}) + N_{2}O({}^{1}\Sigma^{+}) = 3.39 \text{ eV}$$

$$CO({}^{1}\Sigma^{+}) + N_{2}({}^{1}S^{+}_{3}) = 2.03 \text{ eV}$$

We have undertaken a spectroscopic study of this reaction to try to detect emission from electronically excited products. A gas phase flow reactor was used and chemiluminescent spectra were recorded between 200 and 1100 nm. Carbon atoms were produced by mixing, on a multihole diffuser, a flow of atomic hydrogen diluted in helium with a flow of halomethane (CHCl₃, CHBr₃ or CCl₄). This mixing gave intense C_2^{\star} bands of Swan, Phillips and Ballik-Ramsay systems from the reaction :

$$C + CX \rightarrow C_2^* + X(X \equiv C1, Br \text{ or } H)^3.$$

The CN red bands of $A_{\Pi_1}^2 \rightarrow X^2 \Sigma^+$ transition arose readily when N_2^0 was added to the flow of halomethane while the intensities of C_2^* bands decreased so much that the overlapping of CN^* red bands by C_2^* bands became negligible for $P_{N_2^0} > 0.02$ torr. Furthermore in the red and near infrared no emission from $N_2^*(B_{\Pi_2}^*)$ could be detected. Thus for $P_{N_2^0} > 0.02$ torr, CN^* red bands appearing alone, it was possible from the measurement of their intensities to determine the relative vibrational populations of $CN^*(A^2\Pi_1)$. Between 200 and 250 rm Cameron bands from $CO^*(a_{\Pi_1}^2)$ were not detected.

About CN chemiluminescence, three main features can be pointed out: 1 - for constant operating conditions, the distribution of relative vibrational populations of $A^2 I_i$ state was independent of the nature of halomethane.

2 - the increasing of power in the microwave cavity, which produced H atoms by dissociating H, diluted in He, did not affect this distribution, even for H concentration ten times greater (determined by H + NO chemiluminescence). Thus energy transfers leading to $CN^*(A^2\Pi_1)$, from : H + H + CN + CN^{*} + H₂

or collisions of CN with excited species produced either in the microwave cavity or in the diffusion flame, had no detectable influence on the observed distribution.

3 - If we suppose that reaction 1 has no activation energy and accounted for N₂O is a linear molecule, the mean total energy available on products, for reactants at temperature T is :

$$\overline{\epsilon}_{tot} = 1.47 \text{ eV} + \frac{5}{2} \text{ kT}$$

For T = 300 K it is $\overline{\epsilon}_{tot} = 1.53 \text{ eV}$

Vibrational levels v' = 7 and v' = 8 are lying, respectively, 1.48 and 1.68 eV above $v^{\dagger} = 0^4$. Production of $CN^*(A^2\Pi_{\dagger})$ up to $v^{\dagger} = 7$ must be expected from this reaction. In our experiments, bands from vibrational levels up to v' = 7 were actually observed. We never detected any band corresponding to v' ≥ 8.

These features indicate that the observed chemiluminescence of CN red bands must proceed by a unique mechanism, likely to be reaction 1. Distributions of relative vibrational populations of $CN^*(A^2_{\Pi_d})$ for different pressures of N₂O are given in the figure. The collisional relaxation by N₂, chemically unreactive, is also shown. Let us call $R = k_1/k_1 + k_2$ the ratio of the rate of production of $CN^*(A^2_{IL})$ to the total rate of production of CN. Let us define $R_e = N^*/N^* + N^*$ the ratio of the effective steady density N' of $CN^*(A^2_{II})$ to the total steady density of CN on both electronic states $A^2 \Pi_{e}$ and $X^2 E^{+1}$. Owing to relaxation we have $R_{e} < R$. We applied the criterion of Sutton and Suchard⁵, determining minimal value of R_{a} to get amplification on a vibronic transition, to transitions with important Franck-Condom factors. For operating conditions of case d in the figure, the lowest value was got on 1-3 transition with $R > R_{p} > 0.17$. Thus chances for an electronic transition chemical laser based on $C + N_2O$ reaction can be investigated from the transition $CN^*(A_{\Pi_1}^2)_{V'=1} \rightarrow CN(X_{\Sigma}^2+)_{V''=3}^2$.

1 - D. Husain and L.J. Kirsch : Trans. Faraday Soc. 67 2025 (1971) 2 - D. Husain and A.N. Young : J. C. S. Faraday Trans. II 71 525 (1975) 3 - S.J. Arnold, G.H. Kimbell and D.R. Snelling : Can. J. Chem. 53 2419(1975)

- 4 R.J. Fallon, J.T. Vanderslice and R.D. Cloney : J. Chem. Phys. <u>37</u> 1097 (1962)
- 5 D.G. Sutton and S.N. Suchard : App. Opt. 14 1898 (1975).

 $CN^*(A^2\Pi_i)$ vibrational distributions from $C + N_2 O \rightarrow CN^*(A^2\Pi_i) + NO$ under different pressures of $N_2 O$. Relaxation by N_2 is shown. The origin of vibrational energy is taken at v' = O since available energy on reaction products at T = 300 K, ε_{tot} = 1.53 eV, is given relatively to their lowest vibrational level.